A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference
نویسندگان
چکیده
Anti-miRNA antisense inhibitors (AMOs) have demonstrated their utility in miRNA research and potential in miRNA therapy. Here we report a modified AMO approach in which multiple antisense units are engineered into a single unit that is able to simultaneously silence multiple-target miRNAs, the multiple-target AMO or MTg-AMO. We validated the technique with two separate MTg-AMOs: anti-miR-21/anti-miR-155/anti-miR-17-5p and anti-miR-1/anti-miR-133. We first verified the ability of the MTg-AMOs to antagonize the repressive actions of their target miRNAs using luciferase reporter activity assays and to specifically knock down the levels of their target miRNAs using real-time RT-PCR methods. We then used the MTg-AMO approach to identify several tumor suppressors-TGFBI, APC and BCL2L11 as the target genes for oncogenic miR-21, miR-155 and miR-17-5p, respectively, and two cardiac ion channel genes HCN2 (encoding a subunit of cardiac pacemaker channel) and CACNA1C (encoding the alpha-subunit of cardiac L-type Ca(2+) channel) for the muscle-specific miR-1 and miR-133. We further demonstrated that the MTg-AMO targeting miR-21, miR-155 and miR-17-5p produced a greater inhibitory effect on cancer cell growth, compared with the regular single-target AMOs. Moreover, while using the regular single-target AMOs excluded HCN2 as a target gene for either miR-1 or miR-133, the MTg-AMO approach is able to reveal HCN2 as the target for both miR-1 and miR-133. Our findings suggest the MTg-AMO as an improved approach for miRNA target finding and for studying function of miRNAs. This approach may find its broad application for exploring biological processes involving multiple miRNAs and multiple genes.
منابع مشابه
Perspectives in MicroRNA Therapeutics
RNA-based therapeutics hold significant potential as promising treatment options for human disease. In the past 20 years, advances in the RNA field have identified several novel RNAbased therapies that are currently under clinical investigation, including antisense oligonucleotides, small interfering RNA (siRNA), and microRNA. By targeting RNA and modulating human biology at the molecular level...
متن کاملModulating Anti-MicroRNA-21 Activity and Specificity Using Oligonucleotide Derivatives and Length Optimization
MicroRNAs are short, endogenous RNAs that direct posttranscriptional regulation of gene expression vital for many developmental and cellular functions. Implicated in the pathogenesis of several human diseases, this group of RNAs provides interesting targets for therapeutic intervention. Anti-microRNA oligonucleotides constitute a class of synthetic antisense oligonucleotides used to interfere w...
متن کاملEffect of antisense microRNA targeting survivin on rectal cancer HRC-9698 cells and its mechanism.
BACKGROUND Rectal cancer seriously threats to human health. Traditional chemotherapy drugs might kill rectal cancer cells while easy cause side effects and clinical complications. Therefore, it is necessary to explore possible new methods for rectal cancer treatment. Survivin is an important tumor-specific protein. Previous researches showed it may be closely related to nasopharyngeal carcinoma...
متن کاملCRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo
MicroRNAs are small and non-coding RNA molecules with the master role in regulation of gene expression at post-transcriptional/translational levels. Many methods have been developed for microRNA loss-of-function study, such as antisense inhibitors and sponges; however, the robustness, specificity, and stability of these traditional strategies are not highly satisfied. CRISPR/cas9 system is emer...
متن کاملNpgRJ_Nmeth_1079 1..6
MicroRNAs are predicted to regulate thousands of mammalian genes, but relatively few targets have been experimentally validated and few microRNA loss-of-function phenotypes have been assigned. As an alternative to chemically modified antisense oligonucleotides, we developed microRNA inhibitors that can be expressed in cells, as RNAs produced from transgenes. Termed ‘microRNA sponges’, these com...
متن کامل